If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50=128t-16t^2=t(128-16t)
We move all terms to the left:
50-(128t-16t^2)=0
We get rid of parentheses
16t^2-128t+50=0
a = 16; b = -128; c = +50;
Δ = b2-4ac
Δ = -1282-4·16·50
Δ = 13184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13184}=\sqrt{64*206}=\sqrt{64}*\sqrt{206}=8\sqrt{206}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-8\sqrt{206}}{2*16}=\frac{128-8\sqrt{206}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+8\sqrt{206}}{2*16}=\frac{128+8\sqrt{206}}{32} $
| 2x+7+9x+16=90 | | 9-5p=-16 | | 50=128t-16t^2 | | 3x-2(3x-4)=10 | | -1.34=n/2.5-2.5 | | F(-5)=4x+2 | | 31+39+37+p=140 | | 3n+4/3=1*1/6 | | 2(4x)=8 | | 17x-9(2x-9)=20-12x | | 4/9y−12=4/1y−4 | | -1x-6+1x=-6 | | -8x-8=-8x+8 | | 12^2-5x-2=0 | | x+1/5x=21 | | -2(1/2)=t/10 | | 6g=138 | | 18/45=x/10 | | 12-3/4x=120 | | 0=8x+24 | | (5/9)-(x/3)=4/9 | | 7+3(x-3)=12(3x-15) | | Y18/45=x/10 | | 3n+4/3=-11/6 | | 5-6x+(-4)=1 | | 7/x+3=8/25 | | (5/9)-(-x/3)=4/9 | | 11(b+18)-6(2b+1)=4(-b+9 | | F(8)=3x-10 | | M=-34+2m | | 6(5-2v)=-4(3v+1 | | 24=8(8+x) |